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Theset (X:y =o) is invariant and the set E \ (X : y = 0) does not contain 
complete trajectories of system (4.2) (the proof of this is similar to [a]). Consequently, 

if conditions (3.14) and (4.4) are satisfied, the unperturbed motion x = 0 is asympto- 

tically y-stable as a whole E5). 
Theorem 4. If the initial conditions zi (0) (i c: 1, 2, 3) of the linear system 

(3-11) are selected in accordance with (3.12) and f3.14),and condition (4.4) is satisfied, 

the solid body sunjected to moment (4. l), where @ is determined by equalities (3.21) 
and (4,5) in the presence of gravitational forces either performs the motion 

o = hH,, H, -= so (4.6) 

or asymptotically tends to such motion. Motion (4.6) is asymptotically stable according 

to Liapunov. 
In concluding the author thanks V. V. Rumiantsev for stating the problem and constant 

interest in this work. 
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Existence of a new set of periodic solutions of the problem of a heavy solid body 
motion about a fixed point is proved by the small parameter method of Poincari, 
It is assumed that the body does not greatly differ from a body with a dynamic sym- 
metry axis, and that the constant of integration of the moment of mom~n~rn is 
fairly small, 

Let us consider the motion of a heavy solid body about a fixed point, The equation of 
motion of this problem can be reduced to a fourth order system describing the motion 
of a fictitious material point in a plane, by using the cyclic integral dT / &#’ = f. where 
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T is the kinetic energy, $ is the precession angle, and f is an arbitrary constant. To 
do this we effect two consecutive transformations of coordinates. 

The first of these is defined by formulas 

(P- AwJ c;t:;ns 9 6 = arc cos dniy ’ 

where tp and 6 are, respectively, the angles of spin and of nu~tion ; u and s are the new 
variables with the elliptic functions of argument u having k = [(A - B)C / (A - C)B]“*, 

as their module, while the elliptic functions of argument u depend on module k’ = 

(1 l 

- k%)‘/a 

The second transformation is defined by formulas ( *) 
21 J 

z= Pl(u)du, 
s 

y = - 
s 

pz (s) ds 

0 0 

A - BkIz sn’ s 
pl2 (u) = B + (A - 3) snz u, ~22 @) = dna s 

The equations of motion are regularized by the introduction of the new variable de- 
fined by dt = Idz, where 

I-_+ k%Z 
( + cn+ 

a=~(Ak2snPu+Bk2cn2usn8s+Cdn?uenzs) 

As the result, we obtain the system of equations of motion 

.&_fs k y’ = V,‘, 
fQ 

y” + 7 x’ = V,’ (1) 

where the prime denotes differentiation with respect to z and the following notation is 
used : 

aksnu+bksnscnu+cdnucns-- )I 

n(u)=Cdu2u+k2(A-B)sn2uc$u, vz(s)&hxPs-k~(.4-B)j$+ 

where h is the constant of kinetic energy, and a, b and E are coordinates of the body 

center of gravity, attached to the latter. 
System (1) has the Jacobi integral x’~ + y’s = 2V in which the arbitrary constant 

must be deleted. 

The Poincare method of small parameter can be used for proving the existence of pe- 

riodic solution of Eqs. (1) and for their actual derivation. We restrict the analysis to the 

case of small f for which it is possible to set f I ksp, where j* is the finite quantity. 
As the small parameter we take module k of elliptic functions, and construct the solu- 
tion in the form of series 

* (^r) = ~0 (T) + kzi (r) 3- * - -9 Y (71 = YO (9 f kyi (4 + * * * 

*) An error appears to have slipped in in the similar transformation in Arzhanykh’s pa- 

per C 13. 



The simplified system of equations 

avo avo 
X0” = aso , YO” =ayo (2) 

vo = (h - mgc) COS2 - Ijo, +sh 

is obtained from (1) for k = 0 . Its general solution can be written as 

X0 YO x’ 
~0s - = cn (,~i, x), 

VA 
sh _ = 

VA x cn (wz, x) 

wi = Q (z -q, l=l,2; G= v- Cl+2(h-m3 
A 9 

2 (h - mgc) 
x2 = Cl + 2 (h - mgc) 

We consider here only the case of h. - mgc > 0 and C, > 0. 

The generating solution is obviously periodic of period 2’ = 46K (x), where K (x) is 
a complete elliptic integral of the first kind. 

Let us pass to solving the equations in variations 

x1 
” a2vo avl3 

- axo‘d 21, Yl" = ayoayl (3) 

Since tystem (2) is autonomous, system (3) admits the particular solution zr (7) = 
2s’ (r), vi (T) = vO’ (z). Hence by introducing variables zr = zs’l?,, yi = yo’r), we can 

write the first approximation equation in the form 

ZOQE” + (20’2)’ 4’ = f*Qoxo'yo', yo’$” + (yo’2)’ q’ = - f*902o’yo’ 

where 8, is the value of function Q for k = 0) , 
From (4) we obtain the general solution of the first approximation equation 

(4) 

Xl = 30’ {p1\ $ + pz + f* \ (1 QOXO’YO’ dr) $} 
!/I = YO’ Ps { 1 ++!34 - I*!(\ QOXO’YO’ dz)+} 

(5) 

where pi, ps, fis and pl are constants of integration. 
In accordance with the symmetry theorem in [Z] the conditions of periodicity of solu- 

tion of system (1) can be simplified. Since system (1) is invariant with respect to substi- 

tutions r+- r, z + - 2, y -) y, 5' -) x', y' + - y' 

the conditions of periodicity become 

*1=2(o) = 0, $2=x (3=0, qh=y'(O)=O, $4=yfl(+o 

They constitute a system of equations in parameters pi which are compatible for 

D($l, $2, $37 $4) 

D@l, fiz, fis, pa) 1 k=o +' 

Taking into consideration the form of the first approximation equations (5) it is possi- 
ble to transform condition (6) to the form 

D (937 $4) 

[ D (p3, p4) ii=0 T I 

IO 

(7) 

Carrying out integration in (5), we obtain 
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Using (8) we reduce conditions (7) of existence of periodic solutions to the inequalities 

D ($1, $2) 
D (PI, pz) 1 k=o = - y& E (%I# 0, [ ;(;I; ;i 1 ,._=o = 2E 04 

which are satisfied for any periodic solutions escept for X’ = 0. 

Quasi-periodic motions of the solid body generally correspond to the derived periodic 
solutions of system (1). 

In fact let us consider the cyclic integral 

‘li” = (A 

Zf - CqY cos 6 
sin2cp + Bcos"cp) + Ccos2fi 

By expanding its right-hand part in Fourier series in multiples of argument z / T and 

integrating, we obtain Q = n (z - r,,) + CD (z), where CD (z + T) = @ (z), and n is a 
constant quantity dependent on initial conditions. It is obvious that generally nl’ is not 

a multiple of 2n, which shows the validity of the above conclusion. 
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It is shown that a wide class of nonlinear forces can be represented by the sum of 
potential, nonconservative position, gyroscopic and dissipative forces, 

Investigation of motion stability is in many instances conveniently achieved by ana- 
lyzing the structure of acting forces, This method, whose basis was established in [1] , 
has been recently successfully applied mainly to linear systems of arbitrary forces which 
can be fully represented as the sum of potential, nonconservative position, gyroscopic and 
dissipative forces. It is shown in this paper that such representation of forces can alsobe 
applied to a wide class of nonlinear forces. 

Let an arbitrary vector field Q (5) = Q (I~, . . ., z,,) be specified in some region of 

an n-dimensional orthogonal space 2 = (zr, . . . , Z,J . We call the vector field R (x) 
a circulation field, if at every point A4 of the specified field region vectors R and x 


